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By means of spline fitting, both while converting a Lagrangian distribution of field 
sources onto an Eulerian grid, and while interpolating the field from its Eulerian grid 
to the Lagrangian positions of the responding elements, one achieves effective resolution 
down to about one-eighth of a grid mesh unit. One also avoids discontinuities and noise 
due to cell boundary crossings. 

I. HYBRID EULERIAN-LAGRANGIAN SCHEMES 

The following mathematically equivalent tasks in computational physics are to 
be tackled : 

1. Determination of the flow due to a distribution of vorticity, 
2. Determination of the magnetic field due to a distribution of current, 
3. Determination of the electric field due to a distribution of charge, 
4. Determination of the gravitational field due to a distribution of mass. 

These four problems will be treated in two dimensions. 
Generalization to three dimensions is not trivial in applications 1 and 2 [l]. 

While in applications 3 and 4 such generalization is trivial, it remains expensive 
computerwise and will not be dealt with here. Only straight, parallel vortex or 
current filaments, and straight parallel rods of charge or mass will be considered 
as sources of fields. (The word “source ” is not to be understood in just the fluid 
dynamical sense here, but generally in the sense of “origin” or “cause”. The 
source material, quantitatively, is circulation in the fluid dynamical application.) 
Mathematically, all four problems are the same: the interaction potential is In r2 
in each case. 

The fluid problem is conventionally treated by fully Eulerian methods. The 
continuous vorticity and the continuous streamfunction are recorded over a grid, 
dynamical and interaction laws are written as partial differential equations only, 
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and finite difference schemes are used that require function records only at the 
discrete gridpoints; subgrid resolution is never required. The interaction potential 
is not used as such; the V2 operator (for which In r2 is the Green’s function) is 
inverted by one of the many finite difference algorithms now available [2]. 

There are some examples of fully Eulerian schemes being used successfully also 
in the electrostatic problem. The two-dimensional configuration space is then 
expanded into four-dimensional phase-space, and Boltzmann’s equation, in addi- 
tion to Poisson’s equation, is solved over a grid [3]. 

There are a few instances, also, of fully Lagrangian schemes being used for the 
solution of these problems [4]: the action upon each element (vortex, filament, 
charge, particle) due to all the other elements is then calculated by summing all 
the interaction potentials In 1 rr - rj j2. The economy of this scheme is discussed 
in [2] and found to be unfavorable for most cases. 

By far most popular is the hybrid Lagrangian/Eulerian scheme where the 
elements are discrete and in unrestricted positions. They are made to interact 
with each other through a potential recorded on a regular, fixed mesh. This method 
is beginning to gain popularity also in the simulation of vertical inviscid flow 
(Refs. [l , 51). 

It is here that one requires subgrid resolution, both when the source distribution 
is to be converted from Lagrangian to Eulerian and when the resulting potential 
or field is to be converted back from Eulerian to Lagrangian for the purpose of 
getting the local action on the responding elements. In other words, one requires 
the field at points other than meshpoints due to sources which are not necessarily 
located at mesh points. A finite-difference Poisson solver is used, in place of the 
direct interaction kernel In (distance2), between the Eulerian source and potential 
distributions. 

II. THEINTERACTION KERNEL ARRAY 

Before concerning ourselves with the problems of interpolation, let us consider 
the exceptional case where no interpolations are necessary: a “particle” located 
at a gridpoint acts on another located at a gridpoint. Ideally, the potential should 
be ln[(Z, - Z’3c)2 + (Z, - Z’,)2] where integers Z, , etc., denote coordinates of 
gridpoints. (The mesh will be assumed uniform and the same in both dimensions: 
the spacing will be taken as unit of length.) 

However, there exists no simple fast algorithm which generates a potential array 
from a source array exactly in conformity with the logarithmic formula: after all, 
what should such an algorithm yield at the gridpoint where one single isolated 
source is located ? 

We must be content with something less perfect. Now the nine-point operator, 
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when inverted, yields a potential array in response to a single isolated source which 
is fairly close to the logarithm except at the origin where, of course, it is finite. 
A numerical experiment with one’s favorite Poisson solver will confirm this, or 
one can look at Table I, obtained by analytical inversion of the nine-point oper- 
ator 161, following the steps given in [7] for the five-point operator. 

TABLE I 

Potentials due to a solitary negative unit (Gaussian) 
charge at top left. Bracketed: deviations from exact logarithmic potentials. 

1.0472 3.6276 5.0208 5.8355 
(-.0117) (- .0048) (-.OOll) 

4.3392 5.2502 5.9419 
( + .0@3 (+.0014) (--.oooo) 

5.7195 6.2046 
(t.0007) (+.0003) 

6.5299 
(+.ooo2) 

The calculations to be presented here were originally performed using a five- 
point operator, with somewhat less favorable results. In view of the quadratic 
spline fitting which is to be employed in the accumulation of the source distribu- 
tion, one needs a Poisson solver that handles a quadratic source distribution 
correctly. A nine-point operator does this. We have choosen the version [22]: 

One ought to employ Lewis’ variational method [8, Eq. 63)] and find the optimal 
Poisson operator to go with parabolic splines. Such an operator is simple only in 
Fourier transform space: the one-dimensional Fourier version is given by Lang- 
don [9]. It should lead to better overall performance in numerical simulations 
without necessarily making the approximation to the logarithm any better, but 
at the moment our main concern will be with the value of the interaction kernel 
(or “Green’s function”) at the origin. In fact, most physicists would “buy” a 
numerical experiment with an interaction kernel (between elements at dz#erent 
locations) that is not exactly logarithmic, provided this kernel is consistently 
adhered to. However, the finite self-energy, in place of the ideal infinite self- 
energy, requires more justification and physical interpretation. 



SUBGRID RESOLUTION OF FLOW AND FORCE FIELDS 253 

At first glance one might see a major discrepancy here between the physical 
reality and the computer model which purports to simulate it. But, in fact, there 
is a virtue in the finite value of interaction potential at the origin. In most applica- 
tions the sources carried in the computer model represent extended sources rather 
than singular sources: In application (2), the current filaments are finite diameter 
wires. In application (4), the massive particles may be finite diameter stars. In 
application (3), as well as in some of the gravitational applications, each particle 
carried in the computer is a “superparticle,” standing in for a very large number 
of smaller physical particles that are spread over a certain area or volume (the 
“charge clouds” introduced in Ref. [lo]. In application (1) each vortex carried 
in the computer is really a marker in the fluid and should be considered as a 
finite element of circulation associated with a fluid element of finite area. 

If, now, one calculates the true potential created by a finite circular extended 
source with uniform interior density, one obtains a parabolic potential profile in 
the interior, joined smoothly to the logarithm outside. It is instructive to calculate 
the size of source which will give the same potential difference between the origin 
and some distant point as the finite operator solution. Fitting the constants one 
obtains a source radius of 0.45111 mesh units. In other words, the nine-point 
Poisson operator automatically leads to a potential profile closely resembling that 
of a superparticle with very plausible dimensions. If we interpret our tabulated 
values as the interaction potential between two finite-radius elements, i.e., if the 
responding element is not infinitesimal but of the same form as the source, the 
radius of each must be taken as 0.3513 units in order that the central interaction 
potential and the distant (logarithmic) interaction potential can both be matched 
to the tabulated values. 

One might wish to use an interaction potential corresponding to a superparticle 
of different size. A spreading algorithm which effectively blows up the elements to 
about 4 or more cells in area was given by the author under the heading “An 
Inexpensive Noise Abatement Program” [13]. A brute-force method would be to 
start with the potential resulting from the nine-point operator and then simply to 
add or subtract a multiple of the original source distribution, thus raising or low- 
ering the central value of the interaction potential at will. This amounts to changing 
the factor l/12 in front of the V%#J term on the right of the nine-point operator 
identification given above. In tampering with this term, we are effectively redis- 
tributing the sources prior to inverting the stencil. 

It should be noted that this method of smoothing is not like “charge sharing” 
or “area weighting” [I 1, 121 which, as shown by Langdon [19], can be combined 
with interpolation into a single operation, and it becomes almost a matter of 

1 This is the numerical value of exp $ 
1 1 

+ j - y - z In 12 where y is Euler’s constant. 
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semantics whether this operation is interpreted as “smoothing” or “interpolation” 
or both. Rather, tampering with the V2&12 term is equivalent to tailoring the 
Fourier transform of the operator which connects discrete source and field data 
(Langdon, lot. cit.). 

A good principle for making a choice of particle size or well-depth is to apply 
Lewis’ optimization scheme. As will be reported elsewhere, Lewis’ full scheme 
asks for a 25-point rather than 9-point operator, but when a 9-point approximation 
to Lewis’ scheme is attempted, the well-depth controlling Wterm has to be given 
the factor l/12. This justifies our adherence to the uncorrected potentials given in 
Table I. 

III. THEINTERPOLATED FIELD DUE TO A CELL-CENTERED PARTICLE 

Assuming now that a source of the indicated size is located exactly at a cell 
center we begin our interpolation studies by letting the source act on a “receiver” 
that is not at a cell-center. The field, or the potential, must then be interpolated 
from the available table. 

The earliest two-dimensional computer simulations [14] make no attempt at 
interpolation at all. The field in each cell is taken uniform and obtained by dif- 
ferencing the potential across two neighboring cells. Subgrid resolution is not 
attempted. The onus of resolution is on using a fine mesh. Computing effort is 
saved at ‘move’ time, at the cost of increased Poisson solving effort and potential 
array storage. It is not possible to describe the effective field distribution within 
each cell by a continuous potential; that is a qualitative defect which could be 
serious. On the other hand, there is no self-force on any particle when the method 
is coupled with nearest gridpoint (NGP) for off-center sources, i.e., allocating 
each source to its nearest grid-point. 

In order to advance beyond the original primitive and cheap option of aban- 
doning subgrid resolution one can follow different paths. Typically one can create 
two field component tables by differencing adjacent potentials, and one can then 
interpolate linearly in these tables [ll, 121. More consistent would be direct 
quadratic interpolation of the potential and determining the local slopes of the 
quadratic potential surface. Barnes [ 151 discussed such methods in a critical survey 
of different algorithms. Obviously, there is an immediate substantial increase in 
computer effort when the displacement components of particles relative to the 
nearest cell center have to be determined and used as weights of several potential 
array entries, and when they have to be squared or multiplied with each other. 

The author, adopting the philosophy of “might as well be hanged for a sheep as 
a lamb” tried out cubic interpolation through 10 “nearest” gridpoints [16]. He 
obtained fairly acceptable potential contours within each cell, but was disappointed 
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by the still noticeable common failing of all these methods: The fields change 
discontinuously at the boundaries between cells. Such discontinuities are the 
cause of severe noise when particles cross into adjacent cells, and they are quite 
unacceptable when one wants to establish continuous flow fields in application (I). 

At this point Bruce Langdon drew the author’s attention to the modern tech- 
nique of interpolation by splines, the very purpose of which is to avoid these 

FIG. 1. Potential levels for grid point-centered source, by spline interpolation. 
(Note: All figures are print-outs of computer output on an IBM communicating terminal pro- 
grammed for half-shift. This gives equal horizontal and vertical spacing of print positions, eli- 
minating the .5:3 distortion of common direct printouts. The markers showing the source center 
(small circle) and the gridpoints (small squares) were emphasized by hand.) 
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worrisome discontinuities. Bruce Langdon also obliged the author with a concise 
and lucid explanation of the principle of splines, enabling him to put the splines 
to work directly. Figure 1 is the outcome of quadratic spline fitting to the entries 
of Table 1. 

The figure provides a contour map of the potential, with alternate levels shown 
blank and shaded.2 Any borderline of a shaded region is a contour line. In applica- 
tion (1) this is a flow line, in application (2) a magnetic field line. In applications 
(3) and (4) the field lines are normal to these contour lines, and their spacing 
measures field strength. The square marks in the figure indicate the cell centers 
where the values of Table 1 are supplied. Cell boundaries run, of course, midway 
between these centers. 

There are no visible discontinuities across cell boundaries. One can discern a 
deviation from circularity in the contours, but such deviations are near the thres- 
hold of resolution of the display, which is to one-thirty second of a mesh unit. 
We certainly have good subgrid resolution. 

The contours may be compared with the exact contours due to a uniformly 
dense source of radius 0.4511 units, namely, 

and 
@ = (7r/3) + (r/0.451 1)2 up to r = 0.4511, 

@ = (7r/3) + 1 + ln(r/0.4511)2 beyond, 

calculated without interpolation. This comparison is given in Fig. 2 where the 
left-hand side is a version of Fig. 1 with only half the number of contour levels, 
while the right-hand side shows the ideal potential. At distances beyond one cell 
unit the discrepancy is almost down to the resolution of the display. Within one 
cell unit radius the number of contours is (a fortiori) the same, but they are dis- 
placed relative to each other by as much as l/l6 of a unit. The ideal potential 
well (right half of Fig. 2) is narrower. 

Quadratic splines were fitted in both the x and y directions. This means that in 
each cell one uses a quadratic in x with coefficients that are quadratic in y or vice 
versa. Each such doubly quadratic function with its 3-by-3 coefficients is fitted 
at the cell center and the remaining eight data are primarily determined from the 
eight closest neighbors. However, the condition of continuity across cell boundaries 
introduces a further, somewhat weaker dependence on more distant gridpoint 
values. With the typical 24-bit precision in IBM 360 floating-point arithmetic, this 
secondary influence reaches to about nine cells away. Section VI below explains 
the procedure in detail and presents some useful algorithms for its implementation. 
(The secondary, weaker influence is automatically built into Lewis’ scheme which 

* It is a display of a selected bit in a 129 by 129 array of subtabluated potential values: odd 
eighths are shown as plus signs, even eighths as blanks (units as in Table 1). 
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FIG. 2. Left: potential as for Fig. 1, with half the number of levels. Right: uninterpolated 
potential levels due to ideal solid cylindrical source of radius 0.4511 mesh units. 

produces an array of spline coefficients-weights of basis functions-rather than 
an array of potential values over a grid.) 

IV. INTERACTION POTENTIAL DUETOAN ARBITRARILY PLACED SOURCE 

Looking at Figs. 1 and 2 one might become unduly optimistic regarding the 
power of spline interpolation. One would confidently derive velocity or field 
components from the direction and spacing of the equipotentials, i.e., by eval- 
uating the partial derivative of our quadratic functions, anywhere in any cell. 
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However, the good performance of the scheme is due largely to the fortunate 
placing of the source at a cell center. When the source is moved off-center, results 
are much less satisfactory, as shown by the distorted and displaced contours in 
Fig. 3. 

In this case, the interaction potential has to be interpolated at both ends, i.e., 
one writes r2 as (x - x’)~ + (v - u’)~ in the parabolic-logarithmic potential given 
in Section 11 and interpolates on all four variables x, x’, y, y’ when neither the 
source nor the responding element are at integer locations. 

FIG. 3. Potential levels for source with coordinates 5/16, 3/16 relative to a gridpoint, by spline 
interpolation. 
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Rather than using the exact logarithmic values for the table of the kernel, we 
use again the slightly imperfect values readily obtained by nine-point Poisson 
operator inversion. These values were used for the case of a grid-centered source 
in Section III, and they are listed in Table 1. 

Interpolation on x and y is mathematically the same as interpolation on x’ and 
y’. The same quadratic splines will be used in this new interpolation as were used 
previously. One can interpret the process of interpolation as a form of “weighting” 
or “sharing,” and this alternative view is often preferred. The equivalence of the 
two points of view is demonstrated in [19]. Linear weighting or “area” weighting 
has long been used to improve on the crude and cheap NGP (nearest gridpoint) 
method of accumulating charges of particles into the charge array. Here we do 
not only advance from linear to quadratic weighting, but we do this by quadratic 
spline fitting. This amounts to distributing a charge or source primarily among 
the nearest nine gridpoints and making a secondary allocation over a wider 
range-up to 9 mesh units away before the weights become subliminal in IBM 360 
precision. This secondary allocation is unnecessary if one uses Lewis’ operator 
which connects spline coefficients of density directly with spline coefficients of 
potentials. 

Having distributed a single off-center charge to neighboring gridpoints and 
applied a nine-point Poisson operator inversion to the charge array, one then 
applies another spline-fitting in order to get the potential everywhere, between the 
gridpoints as well as at the gridpoints. 

Figure 3 shows the result of such a multiple operation for the case where 
.Y = 3/16 and y = 5116, chosen as a “typical” off-center position. The display is 
arranged so that the source is in the middle of the picture and the gridpoints are 
offset. 

We note considerable distortion of the equipotentials from the ideal (the right 
half of Fig. 2) or from the on-center configuration of Fig. 1. The potential well 
has in fact been dragged over towards the nearest gridpoint, and a count of con- 
tours, starting from the distant contours which agree tolerably with those of 
Fig. 1, shows that one contour has been lost. The well is less deep or, for a positive 
charge, the peak is lower. 

The centers of the outer contours agree well with the position of the source 
but the centers of the inner contours are displaced from where they ought to be 
up to l/8 of a mesh unit. A systematic exploration of the full range of possible 
grid locations relative to the source shows this to be about the worst displacement. 

Regarding the well depth, one gets more severe effects as the source moves 
toward the center between four nearest gridpoints. In this position there is no 
displacement, but one finds a more drastic reduction of well depth. The contours 
are shown in Fig. 4. 

When one moves the grid into various positions relative to the source, the 
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FIG. 4. Potential levels for source midway between four gridpoints, by spline interpolation. 

potential well is gently pulled out of shape or, putting it another way, when a 
source moves through a grid, some wobbles in its position and strength are 
introduced by the grid. These effects are strictly local: The contours more than 
2 mesh points away remain fairly steady relative to the source. Since we have used 
splines, no discontinuities are introduced by the grid. 

The uncertainty of position introduced by the grid within the vicinity of the 
source is about one-eighth of a mesh unit, i.e., less than the implied source radius. 
Jn view of this, one would be wasting information if one were to spread the 
source deliberately over a larger area than that which resulted naturally from the 
Poisson-solving algorithm. On the other hand, one could hardly go much further 
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in the other direction, that of narrowing the source; indeed, the more the singularity 
at the origin stands out against the rest of the entries in Table 1, the less accurately 
can it be reproduced by interpolation from a table of values taken in the surround- 
ing flatter domain. For this is what our scheme amounts to: Instead of passing on 
the data for a contour map in the form of the original benchmarks which included 
the bottom of the well or top of the peak, we only supply data obtained by inter- 
polation from the original benchmarks on the slopes of the well or peak. 

To get the same localization (l/8 mesh units) with NGP, one would have to 
quadruple the meshpoints in each dimension and the extra cost in storage (or 
buffering in and out) and Poisson solving time must be weighed against the cost 
of the spline interpolations. However, one would then also forego the benefit of 
higher quality field mapping at moderate distances from the source (about l/16 
of our present mesh units), and one would miss the benefit of the smoothness of 
the spline interpolated fields. 

Making the grid four times finer in each dimension increases Poisson solving 
time by more than a factor of 16 (a factor 20 would be representative; see [2]), 
assuming core storage is available. The cost of quadratic spline interpolation, on 
the other hand, can be estimated from the following considerations: 

(a) Generating tables of spline coefficients adds 50-80 % to the execution of 
the fastest direct Poisson codes (see Section VI), but nothing to the popular two- 
dimensional transform codes. 

(b) When advancing from NGP to linear interpolation (area weighting) in 
two dimensions, one introduces four multiplications and eight additions per element 
per time step and per interpolated variable (density, potential, field component). 
When advancing from linear to quadratic interpolation, one introduces another 
six multiplications and 18 additions per element per time step and per variable. 

ln view of the fact that in plasma and gravitational applications the total number 
of particles has to be large for various reasons, such as noise suppression and good 
resolution in momentum space as well as in -X-Y space, the cost balance could 
easily go against quadratic spline interpolation here, i.e., more grid points and a 
simpler “mover” may be cheaper. 

In sum, quadratic spline interpolation gives satisfactory subgrid resolution and 
good economy for handling isolated elements or strongly localized sporadic 
concentrations. Regarding collective effects in plasmas and gravitating systems, 
there may be some doubt as to its economy. If it is used, one may speculate that 
some subgrid physics will be simulated adequately, and mesh sizes as large as a 
Debye length or a Larmor radius may be acceptable. One knows that mesh sizes 
of several Debye lengths lead to disastrous stroboscopic grid effects (“aliassing”), 
which can, however, be alleviated by higher order interpolation, i.e., by improved 
subgrid resolution [I 91. 
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V. SELF-EFFECT AND SELF-ENERGY 

Of major concern to the physicists (who have been struggling with self-energy 
problems of particles for nearly a century) will be the self-propulsion and variable 
self-energy exhibited by the elements in our scheme. 

Clearly an off-center vortex will make itself precess, as seen in Fig. 3. An off- 
center charge will propel itself away from the nearest gridpoint while an off-center 
mass will gravitate towards that gridpoint. The self-energy of a particle does not 
remain constant while it moves through the grid: it is highest at a gridpoint 
(Fig. 1) and lowest midway between four gridpoints (Fig. 4). 

In spite of this variability of self-energy, there exists a pseudo-energy for an 
assembly of charged or gravitating particles which is conserved to second order 
in the time step. If one forms the kinetic energy from the displacements during a 
time step and adds to this the potential energy of the particles at their final posi- 
tion in the field created by them in their initial positions, one obtains an energy- 
like expression which is time-symmetric for our scheme. (To check this, one only 
needs to multiply the central difference acceleration statement by the total dis- 
placement through two time-steps-and one can also check that a magnetic field 
parallel to the charged rods, if introduced time symmetrically as in [17], will have 
no effect on this energy balance.) The time-symmetry of the total (kinetic plus 
potential) energy so defined is due to using the same interpolation scheme for the 
sources and the responders--the interaction kernel array itself is symmetric 
already.3 From the time symmetry it follows directly that the energy error is 
quadratic in the time-step. Langdon [19] found the kernel and interpolation 
symmetry to be a sufficient condition for energy conservation in the limit of zero 
time-step. In a recent communication [9] he emphasizes this feature with respect 
to the use of splines. .4s long as we are interpolating potentials, not fields, from 
their gridpoint values, we are operating in the mode described by Eqs. (28, 29) 
in Ref. [19]. This mode permits exact energy conservation. 

Regarding the self-force and the ugly (but, as just explained, not crippling) 
variable self-energy, we observe that (1) these features do not occur with NGP 
and (2) they would not occur if, instead of interpolating for the potential, we 
interpolated instead for the field components from two field component tables. 

These latter tables (for an isolated source at the origin) are antisymmetric in 
one of the two indices, symmetric in the other. The choice of a finite potential 
value at the origin which occupied us in Section III would be immaterial and 
hence particle size (provided it is less than a mesh unit) plays no part. Antisym- 
metry forces the field entry at the origin to be zero. 

3 An optimal Lewis operator, in place of our nine-point Poisson operator, would likewise 
result in energy conservation-after all, it is derived from an energy principle (Ref. [IS]). 
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Now let Eij be the vector array of gridpoint fields and let wij(r) be the weights 
for an element at r. Then the field at r due to a source at R, 

is antisymmetric with respect to interchange of r and R. This is Newton’s third 
law and results in zero self-force as well as strict momentum conservation even 
for finite time-step. However, one cannot readily construct a quasi-energy for 
this scheme, even if one requires only conservation to second order in the time- 
step (see [19] for the case lit + 0). 

Thus one has the mutually exclusive choice between momentum and “energy” 
conservation, in that one can use spline interpolation on the field components or 
the potential array. We have presented the latter case in our calculations and 
diagrams, for illustrative purposes, and to save array space. An important applica- 
tion of spline interpolation will be to electromagnetic codes which, perferentially, 
employ field components [20] and which, on account of the three-dimensionality 
of the important applications, call for the drastic economy of a very open mesh. 

VT. THE WEIGHTS RESULTING FROM SPLINE FITTING 

Of the technical detail in the calculations the spline fitting algorithm is worth 
reporting. One can then get a feel for how a source is “shared” between the grid- 
points and how information is gathered from the gridpoints for the evaluation of 
the local fields. 

We present the procedure for one dimension only-extension to two dimensions 
is trivial. We consider a potential function F(x) whose values are given at integer 
points x = n as an array F,, . In the range n - 0.5 < x < n + 0.5 we fit a parabola 
which we write in the form 

F(x) = Fn" + (x - n)6Fn" + ((x - KZ)~ + l/4) c?Fno/2, (1) 

where Fno, SFno and PF,O should be considered, in the first place, just as names 
for the coefficients appropriate to the n-th interval. Notice the extra “l/4” included 
in the quadratic term. Without this, we would have an ordinary quadratic inter- 
polation formula; Fno would then be identified with F, while 6Fno, PFno would be 
the first and ‘second central differences in the F,O (or F,) array. In the presence of 
the “l/4” term the Fno array cannot be identical with the F,, array, as seen when 
one puts x = n. Let us concentrate on the continuity across cell boundaries first. 

581/1x/2-8 
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At the limits of the interval, x = n f l/2, the formula yields 

F(n 5 l/2) = Fno f @Fno + $@F,O, 

F’(n f l/2) = SFno & PF,O, 

and if 6F,,O, S2Fmo are now interpreted as first and second central differences of the 
yet undetermined array Fno, we obtain 

F(n $. 4) = (Lo + F:dP, 

F’(n + 4) = F:,, - Fno, 

F’(n - $) = Fno - F;_, , 

showing that we get the same values for function and slope if we work from the 
neighboring cells, using the same array of coefficients Fno. 

Applying (1) at x = n, one gets 

F, = (1 + G/8) Fno; (2) 

in other words, the coefficients F,O are found from F, by inverting the difference 
operator 1 + a2/8. The “Greens function” for this operator is readily obtained, 
and one solves 

Fno = c d? Fm 

m (-3 - 1/g)l”-“l . 

Thus, the coefficients are primarily given by the local value F, , but with an 
additional dependence on the nearest neighbors. The dependence gets exponentially 
weaker with distance and, as indicated before, when / n - m 1 exceeds 9, the weight- 
ing factor in (3) drops below detectability in 24 bit precision. For this reason we 
have not mentioned boundary conditions specifically-in any case, the examples 
discussed here are for infinite space: after all, the whole picture in Figs. 14 only 
extends 2 cells away from the source. 

Spline interpolation, or weighting, is therefore a two-stage process: first comes 
the inversion of 1 + S2/8 which results in an exponentially attenuated set of 
weights for the entire neighborhood of the particle. Then comes the construction 
of the parabola, resulting in weights which are quadratic in x, to be applied at the 
three closest mesh points. 

The two-stage weighting operation is carried out twice, namely, at the input 
end-before Poisson inversion-when charge or circulation is shared over the 
surrounding gridpoints and again at the output end when the field is to be deduced 
from the potentials on the gridpoints in the environment. On each occasion an 
inversion of the 1 + S2/8 operator must be carried out, or the kernel 
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t/2(--3 - d/S)-In-ml must be applied. One might think that at one end of the 
entire procedure the operator is applied directly while at the other end it is inverted, 
and one might be tempted to cancel the two steps against each other. This is not 
so: 1 + Sz/8 is inverted both times, or the kernel is applied both times. There is a 
further doubling of these operations due to working in two dimensions. 

The operator 1 + S2/8 can be inverted very easily when one works in Fourier 
transforms, as required by many Poisson solving schemes: for the harmonic char- 
acterized by the variation exp(2nikz/N) the inverse operator becomes a numerical 
divisor of value (3 + cos 2&/N)/4. This can be built into the set of pretabulated 
multipliers for generating Fourier harmonics of potential from Fourier harmonics 
of density and should not lengthen the execution time per step. 

Without Fourier-transforms, the inversion is more conveniently done by “cyclic 
reduction” [21] than by applying the Greens function as in Eq. (3). The three- 
term recurrence relation (2) for F,O may be written in the form 

F,' = F, - (Fz+l + Fz-, - 2FJ6 to be used for n = 1, 3, 5, 7,... (4) 

in order to eliminate all odd-indexed unknowns and to obtain the three-term 
recurrence relation for even-indexed unknowns, namely, 

Fn” = F,,’ + (F:-2 i- Fi,, - 2F,,')/34 to be used for n = 2, 6, lo,... (5) 

with F,' defined by 

Fn’ = F, - (Fran-1 -I- Fn,, - 2FJl4 to be used for n = 2, 4, 6, 8 ,... . (6) 

Using (5) at the indicated n-values, one eliminates unknowns with twice-odd 
index and constructs the three-term recurrence relation connecting unknowns 
with indices divisible by 4, namely, 

Fno = F;r+(F:-l + F;,, - 2Fr)/1154 to be used for n = 4, 12,20,.. . (7) 

with the definitions 

F:'= F,'+ F:-, +-FL+, - 2F,')/36 to be used for n = 4, 8, 12, 16 ,... . (8) 

Again, using (7) for the listed indices one advances to the next level and obtains 

Fno = F:+(F:-, +F:+, - 2Fc’)/1331714 to be used for n = 8,24,40,... (9) 

with the definitions 

FfJ = FL'-/- (F;,'_, +F;;, - 2FL1)/1156 to be used for n = 8, 16, 24 ,... . (10) 
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In the next step the denominator4 in the expression for F,O becomes so large 
(> 1012) that we can equate F,O with F, , Iv defined in analogy with the preceding 
definitions 6, 8, 10. Hence: 

F,’ = F;’ + <Ff_l, -1 F$, - 2Ff’)/1331716 to be,used for n = 16, 32,... . (11) 

The eight statements 6, 8, 10, 11, 9, 7, 5, 4, taken in that order and looped 
through the listed indices in each case, constitute the program for inverting 
I + a2/8. The superscripts on all F, may be ignored: at each step the old value of 
F, may be overwritten by the new value. The number of operations is comparable 
to the number of operations which are carried out log, N times in Poisson solvers 
that do not employ two-dimensional Fourier transforms.. Since the algorithm is 
repeated four times, one can expect a 50-80 7” increase of execution time for the 
field calculation step in typical applications. 

The full cycle of source weighting (“charge sharing”) and flow or field evaluation 
now proceeds according to the following flow-sheet of operations: 

The first version of the source array is created by distributing each source among 
its 9 nearest neighbors in two dimensions. The 3-by-3 weight matrix is the outer 
product of the 3 weights in the x direction and the 3 weights in the y direction. 
The three weights in the x direction are: 

2 - (x - n)* at the nearest gridpoint, 

k(x - n - 4)” at the gridpoint on the left, 

4(x - n + 4)” at the gridpoint on the right. 

Having constructed the first version, one obtains the second version by convolu- 
tion with the kernel z/Z/(-3 - ~‘8)1”-““1, in x as well as in y. This amounts to 
applying the inverse of the operator (1 + @/8) and is most conveniently done by 
Fourier transforming or by the algorithm programmed in Eqs. (4)-(11) above. 

After this, the Poisson operator is inverted and then the preceding step is 
repeated. In the final potential table quadratic interpolation is used with multipliers 
as given in Eq. (I). This must be done in x and in y, amounting in fact to doing 
three y interpolations, namely, at the three nearest x levels, followed by one inter- 
polation in x. A local potential value is thus obtained. 

To get the local y velocity or x force one y-interpolates at the three nearest 
x levels as described in the preceding paragraphs, but then one evaluates the 
x-derivative of (1). This means one applies only linear weights to the three last- 
calculated coefficients. Gradients (or curls) are formed by differentiation of the 
splines fitted to the fixed grid potential values. 

* The algorithm for generating the denominators is to start with the number -4 and then to 
alternate subtractions of 2 with squaring. 



SUBGRID RESOLUTION OF FLOW AND FORCE FIELDS 267 

For the x velocity or y force one makes the obvious changes to the procedure 
just described. 

The Poisson inversion and the two inversions of 1 + Sz/S may be carried out in 
any order if the boundaries are more than 8 cells away from the sources. For the 
purpose of generating the diagrams, the algorithm of Eq. (4)-(11) was applied 
twice in x and twice in y to the array of Table 1. From the newly created table a 
set of benchmarks was calculated by interpolating in each cell with the same x 
and y displacements from the center. This is equivalent to a Poisson inversion of 
the source array consisting of the weights due to a single displaced source, and it 
includes the final 1 + A2/8 inversion preparatory to the final interpolations. The 
latter were then performed at 16641 (= 1292) points covering an area of 4-by-4 
cells including cell boundaries. 
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